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Linearity (Review)

A circuit is linear iff it satisfies both the properties of homogeneity
and superposition, that is

𝑓 𝑎𝑥1 + 𝑏𝑥2 = 𝑎𝑓(𝑥1) + 𝑏𝑓(𝑥2)

y = af(x1) + bf(x2)f()ax1 + bx2

Examples of linear circuit elements

𝑓 𝑥 = 𝑎𝑥 e. g., 𝑣 = 𝑖𝑅

𝑓 𝑥 =
𝑑𝑥

𝑑𝑡
𝑣 = 𝐿

𝑑𝑖

𝑑𝑡
, 𝑖 = 𝐶

𝑑𝑣

𝑑𝑡

𝑓 𝑥 = න𝑥𝑑𝑡 𝑣 =
1

𝐶
න 𝑖𝑑𝑡, 𝑖 =

1

𝐿
න𝑣𝑑𝑡
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5.1 Frequency Response

Consider the linear network as shown below having an input 
voltage or current x(t) and an output voltage or current y(t).

The general equation for the output is

𝑦 = 𝑎𝑥 + 𝑏1
𝑑

𝑑𝑡
𝑥 + 𝑏2

𝑑2

𝑑𝑡2
𝑥 + ⋯+ 𝑐1න𝑥𝑑𝑡 + 𝑐2ඵ𝑥𝑑𝑡 +⋯

For a unit complex sinusoidal input of 𝑥 = 𝑒𝑗𝜔𝑡, this simplifies to

𝑦 = 𝑎𝑒𝑗𝜔𝑡 + 𝑏1
𝑑

𝑑𝑡
𝑒𝑗𝜔𝑡 + 𝑏2

𝑑2

𝑑𝑡2
𝑒𝑗𝜔𝑡 +⋯+ 𝑐1න𝑒𝑗𝜔𝑡𝑑𝑡 + 𝑐2ඵ𝑒𝑗𝜔𝑡𝑑𝑡 + ⋯

= 𝑎𝑒𝑗𝜔𝑡 + 𝑏1(𝑗𝜔) 𝑒
𝑗𝜔𝑡 + 𝑏2(𝑗𝜔)

2𝑒𝑗𝜔𝑡 +⋯+
𝑐1
𝑗𝜔

𝑒𝑗𝜔𝑡 +
𝑐2

(𝑗𝜔)2
𝑒𝑗𝜔𝑡 +⋯

= [𝑎 + 𝑏1(𝑗𝜔) + 𝑏2 𝑗𝜔 2 +⋯+
𝑐1
𝑗𝜔

+
𝑐2
𝑗𝜔 2 +⋯] 𝑒𝑗𝜔𝑡

𝐻(𝑗𝜔)

x(t) y(t)

Linear Network

+

–
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Frequency Response

The steady-state response to the unit complex sinusoidal input is 
therefore

𝑦 = 𝐻 𝑗𝜔 𝑒𝑗𝜔𝑡 = |𝐻 𝑗𝜔 |𝑒𝑗∠ 𝐻 𝑗𝜔 +𝑗𝜔𝑡

Taking real parts, the steady-state AC input and output time 
signals are

ℜ𝔢(𝑥) = cos(𝜔𝑡)
ℜ𝔢(𝑦) = |𝐻 𝑗𝜔 | cos{𝜔𝑡 + ∠[𝐻 𝑗𝜔 ]}

Recall our phasor representation for 𝑥 and 𝑦 by omitting 𝑒𝑗𝜔𝑡

𝑋 = 1∠0°
𝑌 = 𝐻 𝑗𝜔 ∠ 𝐻 𝑗𝜔 = 𝐻 𝑗𝜔

Hence
𝑌 𝑗𝜔

𝑋 𝑗𝜔
= 𝐻 𝑗𝜔

We write 𝑋 𝑗𝜔 and 𝑌 𝑗𝜔 to remind us that frequency is the 
independent variable here. Further, let 𝑠 = 𝑗𝜔, we have

𝑌 𝑠

𝑋 𝑠
= 𝐻 𝑠

Magnitude Phase Shift

Transfer 
Function
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Example 5-1

Soln.:
The resistor and capacitor impedances are R and 1/(sC), 
respectively. Together they form an AC voltage divider, with



Vs
1/(sC)

I
+

Vo

–

R

Phasor Circuit
C

i(t)

vs(t) =
Vscos(t)

R
+

vo(t)

–

+

–

Example 5-1: Analyze the frequency response of the RC circuit 
below.

𝑉𝑜(𝑠) =

1
𝑠𝐶

𝑅 +
1
𝑠𝐶

𝑉𝑠(𝑠) =
1

1 + 𝑠𝑅𝐶
𝑉𝑠(𝑠)

𝐻 𝑠 =
𝑉𝑜(𝑠)

𝑉𝑠(𝑠)
=

1

1 + 𝑠𝑅𝐶
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Example 5-1 (cont.)

Substituting 𝑠 = 𝑗𝜔

𝐻 𝑗𝜔 =
𝑉𝑜(𝑗𝜔)

𝑉𝑠(𝑗𝜔)
=

1

1 + 𝑗𝜔𝑅𝐶

𝐻 𝑗𝜔 =
1

1 + 𝜔2𝑅2𝐶2
=

1 𝜔𝑅𝐶 ≪ 1

1

𝜔𝑅𝐶
𝜔𝑅𝐶 ≫ 1

∠𝐻 𝑗𝜔 = − tan−1 𝜔𝑅𝐶 = ቐ
0° 𝜔𝑅𝐶 ≪ 1

−90° 𝜔𝑅𝐶 ≫ 1

The magnitude response is

The phase response is
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Example 5-1 (cont.)

Let’s examine the case when 𝑅𝐶 = 1/1000 (seconds). Thus, 
𝜔𝑅𝐶 = 1 when 𝜔 = 1000 rad/s. In this case the magnitude and 

phase responses are

It turns out that linear plots are NOT the best way to elucidate 
the frequency response.  
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Example 5-1 (cont.)

Alternatively, we can use a log scale for both frequency and 
magnitude (via the dB concept to be explained later) but retain a 
linear scale for the phase angle.

Originally conceived by Hendrik Wade Bode, this is more revealing 
and is the standard way to plot frequency response.
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Linear Scale vs Log Scale

1 2 3 54 6 7 8 9 10

0.0 0.78

0.85

0.9

0.95

0.700.600.480.30 1.0

Log scale is a way of displaying numerical data over a very wide 
range of values in a compact way. It magnifies the lower end 
more than the higher end.

Linear location

Log scale
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5.2 Transfer Function

An electrical circuit processes the input signal and give an output 
signal.

Transient analysis considers the time behavior of the input signal 
vin(t) and gives the output signal as vout(t).

In contrast, steady-state AC analysis considers an input signal at
a particular frequency, for which we may write vin(t) as Vin(s) 
(s=j), and gives the output signal as Vout(s). The ratio of Vout(s) 
to Vin(s) is called the transfer function H(s) of the circuit.

Formally, transfer function is defined through using the Laplace 
transform. Here we do not make this distinction, but simply 
change j to the Laplacian variable s (s = j).

out

in

V (s)
H(s)

V (s)
=H(s)

inV (s) outV (s)
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H(s) as Ratio of Polynomials in s

For a complicated linear circuit, the transfer function H(s) may be 
of very high order:

m

out 0 1 m
n

in 0 1 n

V (s) n n s ... n s n(s)
H(s)

V (s) d d s ... d s d(s)

+ + +
= = =

+ + +

Do not confuse Vin(s) with d(s), and Vout(s) as n(s): strictly 
speaking, Vin(s) and Vout(s) are the Laplace transforms of the 
input and output signals, which themselves may be ratios of 
polynomials in s; whereas n(s) and d(s) are the numerator 
polynomial and the denominator polynomial of H(s).

The order of the system is the highest exponent in the transfer 
function. For example, if m = 2, n = 3, the system is of third 
order.
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5.2.1 Poles and Zeros

Dealing with high order polynomials are very difficult, and it is 
much easier to handle first and second order systems one at a 
time. This is easily done as a kth-order polynomial has k roots 
(fundamental theorem of algebra), and 

The roots of n(s) are –z1, –z2, …, –zm. Note that n(s=–zi) = 0, 
and H(s=–zi) = 0, so they are known as zeros of H(s).

The roots of d(s) are –p1, –p2, …, –pn. Note that d(s=–pj) = 0, 
and H(s=–pj) = ∞, so they are known as poles of H(s).

For a physical system, all coefficients ni's and dj's are real, and 
the roots have only two forms:

(1) some roots are real; and

(2) some roots are complex conjugate pairs.

  
)ps)...(ps)(p(s

)zs)...(zs)(z(s
H  

)s(d

)s(n
)s(H

n21

m21
0

+++

+++
==
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Decomposing Magnitude and Phase of H(s)

In this course, we mainly focus on real roots, i.e., zj and pj are real. 
Let

i(s z)+

j(s p )+

Then
H(s) |H(s) | H(s)= 

Taking common logarithm, i.e., log10, on both sides, and separate 
the magnitude and the phase, thus turning multiplication and 
division into addition and subtraction:

H(s)

Hence, we analyze H(s) by analyzing |H(s)| and H(s) separately.

  
|ps|...|ps||ps|

|zs|...|zs||zs|
H 

nn2211

mm2211
0

+++

+++
=

  H ogl 0=   |zs| ogl 2++

| ps| ogl 1+−

  |zs| ogl m++  |zs| ogl 1++

  |ps| ogl 2+−   |ps| ogl n+−

  )s(H ogl

ij |zs| +=

ij |ps| +=

...+

 ...−

n21m21  ...... −−−−+++=
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Measure Power in dB

In comparing the ratio of two power levels, the common (base-
10) logarithmic scale is usually used. The unit is the bel (B) after 
Alexander Graham Bell, the inventor of the telephone:

For historical reasons, engineers use decibel (dB) instead of bel, 
and 1 B = 10 dB. Hence,

2

1

P
10

P
= 2

1

P
log log(10) 1B

P

 
= = 

 

2

1

P
100

P
= 2

1

P
log log(100) 2B

P

 
= = 

 

2

1

P
300

P
= 2

1

P
log log(300) 24.77dB

P

 
= = 

 

In general,

2

1

P

P
→ 2

1

P
10 log     dB

P

 
  

 
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For voltages V1 and V2 driving a resistor R, the powers are

Measure Voltage and Current Ratios in 20log dB

1P

2
21

1

V
I R

R
= =

Hence, the ratio of the two power levels is

2P

2
22

2

V
I R

R
= =

In circuit analysis, although the output voltage may be driving a 
different resistor from the input voltage, we still adopt the 
convention of

2

1

P

P
→

2

2
2

1

V / R
10 log

V / R

 
  

 

2

2
2

1

I R
10 log

I R

 
  

 
→

2

1

V

V
→ 2

1

| V |
20 log     dB

| V |


2

1

| V |
=20 log    dB

| V |


2

1

| I |
=20 log     dB

| I |

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5.2.2  Bode Plots

Bode plots turn a transfer function into its graphical 
representation. Bode plots consist of the magnitude plot and the 
phase plot. The actual curves can be approximated fairly 
accurately by using asymptotes.

For a single pole =p1 or zero at =z1:
For the magnitude plot, one asymptote is the log axis, and the 
other one has a slope of ±20 dB/dec (dec=decade), that is, if the 
frequency changes by 10 times, the magnitude also changes by 
10 times or ±20 dB. They meet at =p1 (z1), forming a corner. 
Hence, p1(z1) is known as the corner frequency. Also, at =p1 

(z1), the magnitude is ±3 dB, and it is also known as the 3 dB 
frequency.

For the phase plot, the asymptotes are the log axis that ends at 
=0.1p1(z1), a horizontal line at ±90o that starts at =10p1 (z1),
and a line with a slope of ±45o/dec, starting from 0.1p1 (z1) to 
10p1 (z1). The meeting points are at =0.1p1 (z1) and =10p1 

(z1). The phase at =p1 (z1) is ±45o.
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Salient Features of Bode Plots
for a Pole at =p1 or Zero at =z1

(1) The frequency axis is in log scale, i.e., log , but very often 
we just put down  (and implicitly known to be in log 
scale).

(2) For the magnitude plot, the maximum error occurs at =p1 

(z1) when the asymptote reads 0 dB, but the actual curve 
should be ±3 dB.

(3) The phase at =p1 (z1) is ±45o.

(3) The maximum phase error using asymptotes is about 6o.

(4) The Bode plots show the frequency response of the system.
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Common Terminology in Bode Magnitude Plots

0 dB:
H(j)= 1. Same power

3 dB:
H(j)= 2, 20 logH(j)= 3.010 dB. Double power

−3 dB:
H(j)= 1/2, 20 logH(j)= −3.010 dB. Half power

20 dB/decade:
H(j) increases 10 times (power increases 100 times) 
when frequency goes up 10 times. Slope is +1 in the Bode 
magnitude log-log plot. Equivalent to 6 dB/octave.

−20 dB/decade:
H(j) decreases 10 times (power decreases 100 times) 
when frequency goes up 10 times. Slope is −1 in the Bode 
magnitude log-log plot. Equivalent to −6 dB/octave.



Magnitude and Phase of Real Zero

Consider H(s) = 1 + s/z1 , s=j. 

H(j ) |H(j ) | 20log|H(j ) | H(j ) 

H(j0) 1=

21 0.1+

1

1.054 1= 

0dB

0dB

o0

1H(j3z )

1H(j10z )

2

1H(j10 z )

3

1H(j10 z )

21 0.333+

1 1+

21 3+

21 10+

21 100+

21 1000+

2 1.414= 

10 3.162= 

101 10= 

100

1000

3dB

10dB

20dB

40dB

60dB

o18.4

o5.7

o45

o71.6

o84.3

o90

o90

1H(jz )

1H(jz / 3)

1H(jz /10)

1H(jz /100) 21 0.01+

1 0dB

o0

0dB

5-20
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Magnitude and Phase Plots of Real Zero

10.01z
log

10.1z 1z
3

110 z2

110 z110z

20dB

60dB

40dB

10.01z
log

10.1z 1z
3

110 z2

110 z110z

o45

o90

o0

20dB / dec+

o45 / dec+

H(j ) 

20log|H(j ) |

actual

asymptotes

actual

asymptotes

Magnitude plot:

Phase plot:

0dB

1

s
H(s) 1

z
= +
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Magnitude and Phase Plots of Real Pole



20dB−

60dB−

40dB−

o45−

o90−

o0

20dB / dec−

o45 / dec−

H(j ) 

20log|H(j ) |

0dB



1

1
H(s)

s
1

p

=

+

20log|H(j ) |

20log|H'(j ) |= − 

Let

1

s
H'(s) 1

p
= +

then
1

H(s)
H'(s)

=

and

  = − H(j ) H'(j )

1
3p101

2p101p101p1p1.01p01.0

1
3p101

2p101p101p1p1.01p01.0

actual

asymptotes

asymptotes

actual
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1st Order Pole in Log-Linear Paper for p1=1 rad/s

20dB−

60dB−

40dB−

0dB

80dB−

1 2 3 5.1 .2 .5




o45−

o90−

o0

20dB / dec−

o45 / dec−

.3 10 20 30 50



5-24

H(s)

Standard Form of Transfer Function for Bode Plots

For convenience in working out Bode plots, it is better to write 
the transfer function as

where H0’= H(j0) is the DC gain. Note that H0’ is not the same as 
H0.

Recall a transfer function is written as 

H(s)

  
)ps)...(ps)(p(s

)zs)...(zs)(z(s
H 

n21

m21
0

+++

+++
=

  
)p/s1)...(p/s1)(p/s(1

)z/s1)...(z/s1)(z/s(1
'H 

)s(V

)s(V

n21

m21
0

in

out

+++

+++
==

The magic of Bode plots is that if we have a complicated transfer 
function as the one given above, we can break it down into 
smaller pieces, and add up all the pieces together one by one. 
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Example 5-2

Example 5-2: Sketch the Bode plots of

H(s)

Soln.:
(1) First of all, write H(s) in the standard form, i.e.,

H(s)

(2) Identify all corner frequencies: z1=10 rad/s, p1=1 rad/s, 
p2=1000 rad/s.

(3) H(j0) = 100, and is equal to 40 dB.

)1000s)(1s(

)10s(10000

++

+
=

)1000/s1(1000)s1(

)10/s1(1010000

++

+
=

)1000/s1)(s1(

)10/s1(100

++

+
=



40dB
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Example 5-2 (cont.)

(4) Draw Bode plots of individual factors, and start adding the 
Bode plots from low to high frequency.

0.1 10 10k100 1k1


20log|H|

1p

0.1 10 10k100 1k1


o90−

o0

0dB

|H|

1z 2p

o90

20dB−

20dB

100)s(H1 =

)10/s1()s(H2 +=

s1

1
)s(H3

+
= 1000/s1

1
)s(H4

+
=

)10/s1()s(H2 +=

100)s(H1 =

1000/s1

1
)s(H4

+
=

s1

1
)s(H3

+
=
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Example 5-2 (cont.)

H(s)
)1000s)(1s(

)10s(10000

++

+
=
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Example 5-3

Example 5-3: Sketch the Bode plots of

H(s)
600

(s 1)(s 30)
=

+ +

Soln.:
(1) Write H(s) in the standard form:

H(s)
20

(1 s)(1 s / 30)
=

+ +

Note that:

(1) H(j0) = 20, and is equal to 26 dB.

(2) For  > 0 rad/s, two –20 dB/dec lines add up to give one    
–40 dB/dec line. The phase plots are added similarly.

(3) At  = 1, the actual curve gives |H(j1)| = 26 – 3 = 23 dB
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0.1 10 10k100 1k1


20log|H|

1p

0.1 10 10k100 1k1


o90−

o0

0dB

|H|

2p

o180−

20dB−

20dB

Example 5-3 (cont.)

40dB−

26dB

20dB / dec−

o45 / dec−

40dB / dec−

o90 / dec−

H(s)
600

(s 1)(s 30)
=

+ +
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Example 5-3 (cont.)

H(s)
600

(s 1)(s 30)
=

+ +
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Bode Plots for a Pole or Zero at =0

1H (s)For

Quick computation gives:

H(j ) |H(j ) | 20log|H(j ) | H(j ) 

20dB− o900.1

0dB o901

20dB+ o9010

2H (s) 1p

s
=For

we have
220log|H (j ) | 120log|H (j ) |= − 

2H (j )  1H (j )= − 

1z

s
=

)z1.0j(H 1

)jz(H 1

)z10j(H 1
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Bode Plots of a Pole or Zero at =0 (cont.)

o0

|H|



10.1p 1p 110p 1100p

o90−

20dB / dec−



20log|H|

0dB

20dB−

20dB

40dB−

1p 110p 1100p10.1p

1H (s) 2H (s) 1p

s
=

1z

s
=

o0

|H|



o90

1z1001z101z1z1.0



20log|H|

0dB

20dB−

20dB

40dB

20dB / dec+

1z1001z101z1z1.0
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Example 5-4

Example 5-4: Sketch the Bode plots of

H(s)
60k s

(s 200)(s 20k)


=

+ +

Soln.:
(1) Write H(s) in the standard form:

H(s)
s 1

67 (1 s / 200)(1 s / 20k)
=

+ +

(2) This is a bandpass function (more discussions later) and one 
useful information is the mid-band frequency computed at 
10X of the first corner frequency, i.e., s=j2k, (and the effect 
of the second corner frequency can be neglected):

|H(j2k) | j2k 1

67 (1 j2k / 200)


+

200
3

67
 = → 9.5 dB
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1M10 10k100 1k 100k


20log|H|



o90−

o0

0dB

|H|

67

20dB−

20dB

Example 5-4 (cont.)

o90

1M10 10k100 1k 100k

9.5 dB

H(s)
60k s

(s 200)(s 20k)


=

+ +
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Example 5-4 (cont.)

H(s)
60k s

(s 200)(s 20k)


=

+ +
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5.3.1 Filters

An electrical filter is a circuit that allows electrical signals of 
selected frequencies to pass through, while the rest will be 
attenuated (filtered out).

Some common types of filters are the lowpass filter, highpass
filter, bandpass filter, bandstop (notch) filter, allpass filter, etc.
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Lowpass Filter

Ideal Lowpass Filter

|H|



passband stopband
c

cutoff frequency

20log|H|

1

0

0dB

20dB−

40dB−

transition

band

log

RC Lowpass Filter

All frequencies below the 
cutoff frequency (<c) 
have unity gain; all 
frequencies higher than c

are attenuated to zero.

(3dB bandwidth)

3dB− specified

attenuation

The passband ripple of the RC 
lowpass filter may be specified 
as –3 dB, and the stopband 
attenuation may be specified 
as –40 dB.

−20dB/dec
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20log|H|

0dB
0.5dB−

50dB−

High Order Lowpass Filter

The RC filter is a first order lowpass filter that is far from being an 
ideal lowpass filter, which can only be approximated by high order 
transfer functions. A typical high order lowpass filter is shown 
below.
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Highpass Filter

Ideal Highpass Filter

|H|


c

cutoff frequency

1

0

Practical Highpass Filter

20log|H|

0dB
0.5dB−

50dB−


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Bandpass Filter

Ideal Bandpass Filter

|H|


c1

1

0

Practical Bandpass Filter

20log|H|

0dB
0.5dB−

50dB−
c2


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Lowpass Filter: Schematic

 oVinV

A first order lowpass filter can be constructed by adding a 
resistor across the capacitor of the integrator.

In fact, the analysis of this type 
of circuits can be generalized as 
follows: 


1z (s)

oVinV

2z (s)

1H (s) o

in

V (s)

V (s)
= 2

1

z (s)

z (s)
= −

where the Laplacian variable s is used in place of j (s=j).

C2

R1

R2
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Lowpass Filter: Transfer Function

For the lowpass filter, the transfer function is

1H (s) o

in

V (s)

V (s)
=

We may compare this equation with that of Example 5-1. In this 
case, it is convenient to define H(s) = –H1(s), with Ho = R2/R1 as the 
DC gain and p1 = 1/C2R2 as the pole. Hence,

o

1

1
H

j
1

p

=


+

H(j )

1

22

R

)sC/1(||R
−=

)sC/1(R

)sC/1(R

R

1

22

22

1 +


−=

221

2

RsC1

1

R

R

+
−=
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Lowpass Filter: Frequency Response

oH

1 j0.01
=

+

o

oH 1.000 0.57=   −
1H(jp /100)

oH

1 j0.1
=

+
o

oH 0.995 5.71=   −

oH

1 j
=

+
o

oH 0.707 45.0=   −

oH

1 j10
=

+

ooH
84.29

10.05
=  −

oH

1 j100
=

+

ooH
89.43

100.0
=  −

Compute the transfer function H(j) at various frequencies 
(frequency response):

1H(jp /10)

1H(jp / 3)

1H(jp )

1H(j3p )

1H(j10p )

1H(j100p )

oH

1 j / 3
=

+

o

oH 1.054 18.4=   −

oH

1 j3
=

+

ooH
71.6

3.162
=  −

0dB

0dB

3dB−

10dB−

20dB−

40dB−

0dB
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Magnitude plot:
(Assume Ho = 10, 
or 20 dB)

Phase plot:

H(s)

Lowpass Filter: Bode Plots

10.01p


10.1p 1p 3

110 p2

110 p110p

20dB−

40dB−

o45−

o90−

o0

20dB / dec−

H(j ) 

20log|H(j ) |

0dB



o

1

1
H

s
1

p

=

+

10.01p 10.1p 1p 3

110 p2

110 p110p

20dB 3dB
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Lowpass Filter: Qualitative Analysis

The lowpass filter allows low-frequency signals to pass to the 
output Vo without much attenuation, while high-frequency signals 
are blocked, that is, not allowed to pass through.

One simple way to identify the type of filters is to consider the 
circuit at very low frequency such that capacitors are considered 
as open circuits; and at very high frequency such that capacitors 
are considered as short circuits.

Low frequency signals with 
gain –R2/R1:



1R

2R

inV
2

o

1

R
V

R
= −

High frequency signals 
attenuated to zero:

Inverting amplifier



1R

2R

inV
oV 0=

Inverting amplifier
with zero gain
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Example 5-5



1k

oVinV

Example 5-5: Sketch the output waveform w.r.t. Vin(t) for (1) 
Vin(t) = 2sin(1kt) V; and (2) Vin(t) = 2sin(10kt) V.

200nF

5k

Soln.:
The transfer function is

H(s) o

in

V (s)

V (s)
= 2

1 1 2

R 1

R 1 sC R
= −

+

5k 1

1k 1 s 200n 5k
= −

+  

5

s
1

1k

= −

+
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Example 5-5 (cont.)

(1)

(2)

2V

o135

inV (t)

oV (t)

t
0

2V−

6.28ms

o95.7
inV (t)

0

2V−

oV (t)
t

628 s

2V

𝐻 1k𝑗 = −
5

1 +
1k𝑗
1k

= −
5

1 + 𝑗
= −

5

2
∠ −45° =

5

2
∠135°

𝑉𝑜 𝑡 = 2
5

2
sin(1k𝑡 + 135°) = 7.07 sin(1k𝑡 + 135°)

𝐻 10k𝑗 = −
5

1 +
10k𝑗
1k

= −
5

1 + 10𝑗
= −

5

101
∠ −84.3° =

5

101
∠95.7°

𝑉𝑜 𝑡 = 2
5

101
sin(10k𝑡 + 95.7°) = 0.995 sin(10k𝑡 + 95.7°)

Phase Shift

Gain
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Highpass Filter

Schematic of highpass filter:



1R

oV

1C

inV

2R

Transfer function of highpass filter:

H(s) o

in

V (s)

V (s)
= 2

1 1

R

R 1 / sC
= −

+
1 2

1 1

sC R

1 sC R
= −

+

At low frequencies,

H(j ) 1 2j C R −  0

At high frequencies,

H(j ) 2

1

R

R
 −

20dB−

40dB−

0dB

1 1

1

C R

20 log|H|



2 1R / R H(j ) 


1 1

1

C R

-90º

-135º

-180º
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Highpass Filter: Qualitative Analysis

The highpass filter blocks low-frequency signals but allows high-
frequency signals to pass to the output Vo without much 
attenuation.

One simple way to identify the type of filters is to consider the 
circuit at very low frequency such that capacitors are considered 
as open circuits; and at very high frequency such that capacitors 
are considered as short circuits.

Low frequency signals 
attenuated to zero:

2
o

1

R
V

R
= −

High frequency signals with 
gain –R2/R1:

oV 0=

1R

inV

2R



1R 1C

inV

2R

Unity gain buffer
with zero input

Inverting amplifier



V− is a virtual ground. The same current I goes through C and 
R. Hence

𝐼 =
𝑉1
1
𝑠𝐶

= −
𝑉𝑜
𝑅

𝑉1 = −
𝑉𝑜
𝑠𝑅𝐶

Apply KCL to node V1:

𝑉1 − 𝑉𝑖𝑛
4𝑅

+
𝑉1
2𝑅

+
𝑉1
1
𝑠𝐶

+
𝑉1 − 𝑉𝑜

1
𝑠𝐶

= 0

5-50

Bandpass Filter

I

Vin(s)

Vo(s)

_

+



C

2R

4R

V1(s)

R

C
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Bandpass Filter (contd.)

From before
𝑉1 − 𝑉𝑖𝑛
4𝑅

+
𝑉1
2𝑅

+
𝑉1
1
𝑠𝐶

+
𝑉1 − 𝑉𝑜

1
𝑠𝐶

= 0

𝑉1 − 𝑉𝑖𝑛 + 2𝑉1 + 4𝑠𝑅𝐶𝑉1 + 4𝑠𝑅𝐶(𝑉1 − 𝑉𝑜) = 0

𝑉1 3 + 8𝑠𝑅𝐶 − 4𝑠𝑅𝐶𝑉𝑜 = 𝑉𝑖𝑛

Substituting previous result

𝑉1 = −
𝑉𝑜
𝑠𝑅𝐶

We have

−
𝑉𝑜 3 + 8𝑠𝑅𝐶

𝑠𝑅𝐶
− 4𝑠𝑅𝐶𝑉𝑜 = 𝑉𝑖𝑛

Finally,

𝐻 𝑠 =
𝑉𝑜(𝑠)

𝑉𝑖𝑛(𝑠)
= −

𝑠𝑅𝐶

3 + 8𝑠𝑅𝐶 + 4𝑠2𝑅2𝐶2 = −
𝑠𝑅𝐶

3 + 2𝑠𝑅𝐶 1 + 2𝑠𝑅𝐶
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Bandpass Filter (contd.)

𝐻 𝑠 = −
500𝑠

𝑠 + 3000 𝑠 + 1000

Design example:
R = 500 , C = 1 mF
RC = 0.5 ms
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Bandpass Filter: Qualitative Analysis

The bandpass filter blocks both low- and high-frequency signals 
but allows mid-frequency signals to pass to the output Vo.

Low frequency signals 
attenuated to zero:

High frequency signals 
attenuated to zero:

Unity gain buffer
with zero input

Inverting amplifier
with zero gain

Vin(s)
Vo(s) = 0

_

+


Vin(s)

Vo(s) = 0

_

+


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5.3.2 Second Order Resonance

Example 5-6: Consider an RLC circuit with its input connected to a 
sinusoidal signal generator. Find the transfer function H(s) 
= Vout(s)/Vin(s) and explore the Bode plots for various 
values of R.

Soln.:

+

vout(t)

–
1 mF

+

–
R

C
vs(t)

L

1 mH

)s(V
1sRCLCs

sRC
)s(V

sC

1
RsL

R
)s(V in2inout

++
=

++

=

Second Order
System

The loop current is limited by the capacitor impedance −j/(C) at 
low frequency and the inductor impedance jL at high frequency. 
The loop current, and hence Vout, reaches a maximum when these 

impedances cancel each other. This occurs at 𝜔 =
1

𝐿𝐶
.
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Example 5-6 (contd.)

The transfer function has a zero at s = 0. There are two poles 
obtainable by solving

Second Order
System

𝑠2𝐿𝐶 + 𝑠𝑅𝐶 + 1 = 0

𝑠 =
−𝑅𝐶 ± 𝑅𝐶 2 − 4𝐿𝐶

2𝐿𝐶
=
−𝑅 ± 𝑅2 − 4

𝐿
𝐶

2𝐿

Case 1: 𝑅 > 2
𝐿

𝐶
Two unequal real poles

Case 2: 𝑅 = 2
𝐿

𝐶
Two equal real poles

Case 3: 𝑅 < 2
𝐿

𝐶
Two complex conjugate poles
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Example 5-6 (cont.)

H s =
sRC

s2LC + sRC + 1
L = 1 mH, C = 1 mF

Resonant frequency = 
1

𝐿𝐶
= 1000 rad/s

R = 20 Ω

R = 0.2 Ω

R = 2 Ω

As R decreases, the two real poles of H(s) merge to become two complex 
conjugate poles. A phenomenon known as resonance occurs.
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Frequency Response for Arbitrary Signals

In general, a signal which is energy limited can be decomposed 
into its frequency components. This can be done via the Fourier 
Transform. Each frequency component can be thought as a 
sinusoidal wave with specific amplitude and phase. 
Mathematically, we consider both positive and negative 
frequencies (recall that cos(t) = ½(e+jt + e–jt)). 

vin(t)
|Vin(j)|

Vin(j)





t

0

00

Afterward we can perform the 
frequency response analysis to all 
the frequency components in a 
signal. 


